Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(12): 3019-3032, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38573344

RESUMO

Inclusion bodies (IBs) are protein aggregates formed as a result of overexpression of recombinant protein in E. coli. The formation of IBs is a valuable strategy of recombinant protein production despite the need for additional processing steps, i.e., isolation, solubilization and refolding. Industrial process development of protein refolding is a labor-intensive task based largely on empirical approaches rather than knowledge-driven strategies. A prerequisite for knowledge-driven process development is a reliable monitoring strategy. This work explores the potential of intrinsic tryptophan and tyrosine fluorescence for real-time and in situ monitoring of protein refolding. In contrast to commonly established process analytical technology (PAT), this technique showed high sensitivity with reproducible measurements for protein concentrations down to 0.01 g L - 1 . The change of protein conformation during refolding is reflected as a shift in the position of the maxima of the tryptophan and tyrosine fluorescence spectra as well as change in the signal intensity. The shift in the peak position, expressed as average emission wavelength of a spectrum, was correlated to the amount of folding intermediates whereas the intensity integral correlates to the extent of aggregation. These correlations were implemented as an observation function into a mechanistic model. The versatility and transferability of the technique were demonstrated on the refolding of three different proteins with varying structural complexity. The technique was also successfully applied to detect the effect of additives and process mode on the refolding process efficiency. Thus, the methodology presented poses a generic and reliable PAT tool enabling real-time process monitoring of protein refolding.


Assuntos
Corpos de Inclusão , Redobramento de Proteína , Espectrometria de Fluorescência , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Espectrometria de Fluorescência/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Triptofano/química , Escherichia coli/metabolismo , Escherichia coli/química , Tirosina/química , Fluorescência , Dobramento de Proteína
2.
J Biotechnol ; 379: 65-77, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38036002

RESUMO

A broad application spectrum ranging from clinical diagnostics to biosensors in a variety of sectors, makes the enzyme Lactate dehydrogenase (LDH) highly interesting for recombinant protein production. Expression of recombinant LDH is currently mainly carried out in uncontrolled shake-flask cultivations leading to protein that is mostly produced in its soluble form, however in rather low yields. Inclusion body (IB) processes have gathered a lot of attention due to several benefits like increased space-time yields and high purity of the target product. Thus, to investigate the suitability of this processing strategy for ldhL1 production, a fed-batch fermentation steering the production of IBs rather than soluble product formation was developed. It was shown that the space-time-yield of the fermentation could be increased almost 3-fold by increasing qs to 0.25 g g-1 h-1 which corresponds to 21% of qs,max, and keeping the temperature at 37°C after induction. Solubilization and refolding unit operations were developed to regain full bioactivity of the ldhL1. The systematic approach in screening for solubilization and refolding conditions revealed buffer compositions and processing strategies that ultimately resulted in 50% product recovery in the refolding step, revealing major optimization potential in the downstream processing chain. The recovered ldhL1 showed an optimal activity at pH 5.5 and 30∘C with a high catalytic activity and KM values of 0.46 mM and 0.18 mM for pyruvate and NADH, respectively. These features, show that the here produced LDH is a valuable source for various commercial applications, especially considering low pH-environments.


Assuntos
Corpos de Inclusão , L-Lactato Desidrogenase , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Proteínas Recombinantes/química , Corpos de Inclusão/metabolismo , Fermentação
3.
Microb Cell Fact ; 20(1): 191, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34592997

RESUMO

BACKGROUND: The split GFP assay is a well-known technology for activity-independent screening of target proteins. A superfolder GFP is split into two non-fluorescent parts, GFP11 which is fused to the target protein and GFP1-10. In the presence of both, GFP1-10 and the GFP11-tag are self-assembled and a functional chromophore is formed. However, it relies on the availability and quality of GFP1-10 detector protein to develop fluorescence by assembly with the GFP11-tag connected to the target protein. GFP1-10 detector protein is often produced in small scale shake flask cultivation and purified from inclusion bodies. RESULTS: The production of GFP1-10 in inclusion bodies and purification was comprehensively studied based on Escherichia coli as host. Cultivation in complex and defined medium as well as different feed strategies were tested in laboratory-scale bioreactor cultivation and a standardized process was developed providing high quantity of GFP1-10 detector protein with suitable quality. Split GFP assay was standardized to obtain robust and reliable assay results from cutinase secretion strains of Corynebacterium glutamicum with Bacillus subtilis Sec signal peptides NprE and Pel. Influencing factors from environmental conditions, such as pH and temperature were thoroughly investigated. CONCLUSIONS: GFP1-10 detector protein production could be successfully scaled from shake flask to laboratory scale bioreactor. A single run yielded sufficient material for up to 385 96-well plate screening runs. The application study with cutinase secretory strains showed very high correlation between measured cutinase activity to split GFP fluorescence signal proofing applicability for larger screening studies.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Bacillus subtilis/metabolismo , Bioensaio/métodos , Reatores Biológicos , Corynebacterium glutamicum/metabolismo , Proteínas de Fluorescência Verde/classificação , Proteínas de Fluorescência Verde/metabolismo
4.
Microb Cell Fact ; 19(1): 54, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131833

RESUMO

BACKGROUND: 5-Ketofructose (5-KF) has recently been identified as a promising non-nutritive natural sweetener. Gluconobacter oxydans strains have been developed that allow efficient production of 5-KF from fructose by plasmid-based expression of the fructose dehydrogenase genes fdhSCL of Gluconobacter japonicus. As plasmid-free strains are preferred for industrial production of food additives, we aimed at the construction of efficient 5-KF production strains with the fdhSCL genes chromosomally integrated. RESULTS: For plasmid-free 5-KF production, we selected four sites in the genome of G. oxydans IK003.1 and inserted the fdhSCL genes under control of the strong P264 promoter into each of these sites. All four recombinant strains expressed fdhSCL and oxidized fructose to 5-KF, but site-specific differences were observed suggesting that the genomic vicinity influenced gene expression. For further improvement, a second copy of the fdhSCL genes under control of P264 was inserted into the second-best insertion site to obtain strain IK003.1::fdhSCL2. The 5-KF production rate and the 5-KF yield obtained with this double-integration strain were considerably higher than for the single integration strains and approached the values of IK003.1 with plasmid-based fdhSCL expression. CONCLUSION: We identified four sites in the genome of G. oxydans suitable for expression of heterologous genes and constructed a strain with two genomic copies of the fdhSCL genes enabling efficient plasmid-free 5-KF production. This strain will serve as basis for further metabolic engineering strategies aiming at the use of alternative carbon sources for 5-KF production and for bioprocess optimization.


Assuntos
Frutose/análogos & derivados , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Engenharia Metabólica , Edulcorantes/metabolismo , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Cromossomos Bacterianos , Clonagem Molecular , Frutose/biossíntese , Expressão Gênica , Genoma Bacteriano , Oxirredução , Plasmídeos , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...